Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

MIndGrasp: A New Training and Testing Framework for Motor Imagery Based 3-Dimensional Assistive Robotic Control (2003.00369v1)

Published 1 Mar 2020 in cs.HC

Abstract: With increasing global age and disability assistive robots are becoming more necessary, and brain computer interfaces (BCI) are often proposed as a solution to understanding the intent of a disabled person that needs assistance. Most frameworks for electroencephalography (EEG)-based motor imagery (MI) BCI control rely on the direct control of the robot in Cartesian space. However, for 3-dimensional movement, this requires 6 motor imagery classes, which is a difficult distinction even for more experienced BCI users. In this paper, we present a simulated training and testing framework which reduces the number of motor imagery classes to 4 while still grasping objects in three-dimensional space. This is achieved through semi-autonomous eye-in-hand vision-based control of the robotic arm, while the user-controlled BCI achieves movement to the left and right, as well as movement toward and away from the object of interest. Additionally, the framework includes a method of training a BCI directly on the assistive robotic system, which should be more easily transferrable to a real-world assistive robot than using a standard training protocol such as Graz-BCI. Presented results do not consider real human EEG data, but are rather shown as a baseline for comparison with future human data and other improvements on the system.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.