Papers
Topics
Authors
Recent
2000 character limit reached

Predictive Control and Communication Co-Design: A Gaussian Process Regression Approach (2003.00243v1)

Published 29 Feb 2020 in cs.IT, cs.NI, and math.IT

Abstract: While Remote control over wireless connections is a key enabler for scalable control systems consisting of multiple actuator-sensor pairs, i.e., control systems, it entails two technical challenges. Due to the lack of wireless resources, only a limited number of control systems can be served, making the state observations outdated. Further, even after scheduling, the state observations received through wireless channels are distorted, hampering control stability. To address these issues, in this article we propose a scheduling algorithm that guarantees the age-of-information (AoI) of the last received states. Meanwhile, for non-scheduled sensor-actuator pairs, we propose a ML aided predictive control algorithm, in which states are predicted using a Gaussian process regression (GPR). Since the GPR prediction credibility decreases with the AoI of the input data, both predictive control and AoI-based scheduler should be co-designed. Hence, we formulate a joint scheduling and transmission power optimization via the Lyapunov optimization framework. Numerical simulations corroborate that the proposed co-designed predictive control and AoI based scheduling achieves lower control errors, compared to a benchmark scheme using a round-robin scheduler without state prediction.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.