Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Expression Recognition in the Wild Using Sequence Modeling (2003.00170v1)

Published 26 Feb 2020 in eess.AS and cs.SD

Abstract: As we exceed upon the procedures for modelling the different aspects of behaviour, expression recognition has become a key field of research in Human Computer Interactions. Expression recognition in the wild is a very interesting problem and is challenging as it involves detailed feature extraction and heavy computation. This paper presents the methodologies and techniques used in our contribution to recognize different expressions i.e., neutral, anger, disgust, fear, happiness, sadness, surprise in ABAW competition on Aff-Wild2 database. Aff-Wild2 database consists of videos in the wild labelled for seven different expressions at frame level. We used a bi-modal approach by fusing audio and visual features and train a sequence-to-sequence model that is based on Gated Recurrent Units (GRU) and Long Short Term Memory (LSTM) network. We show experimental results on validation data. The overall accuracy of the proposed approach is 41.5 \%, which is better than the competition baseline of 37\%.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube