Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design optimization of stochastic complex systems via iterative density estimation (2003.00167v1)

Published 29 Feb 2020 in stat.AP, cs.SY, and eess.SY

Abstract: Reliability-based design optimization (RBDO) provides a rational and sound framework for finding the optimal design while taking uncertainties into ac-count. The main issue in implementing RBDO methods, particularly stochastic simu-lation based ones, is the computational burden arising from the evaluation of reliability constraints. In this contribution, we propose an efficient method which ap-proximates the failure probability functions (FPF) to decouple reliability. Based on the augmentation concept, the approximation of FPF is equivalent to density estimation of failure design samples. Unlike traditional density estimation schemes, where the esti-mation is conducted in the entire design space, in the proposed method we iteratively partition the design space into several subspaces according to the distribution of fail-ure design samples. Numerical results of an illustrative example indicate that the pro-posed method can improve the computational performance considerably.

Summary

We haven't generated a summary for this paper yet.