Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for FlipIt Security Game (2002.12909v2)

Published 28 Feb 2020 in cs.LG, cs.AI, and cs.GT

Abstract: Reinforcement learning has shown much success in games such as chess, backgammon and Go. However, in most of these games, agents have full knowledge of the environment at all times. In this paper, we describe a deep learning model in which agents successfully adapt to different classes of opponents and learn the optimal counter-strategy using reinforcement learning in a game under partial observability. We apply our model to FlipIt, a two-player security game in which both players, the attacker and the defender, compete for ownership of a shared resource and only receive information on the current state of the game upon making a move. Our model is a deep neural network combined with Q-learning and is trained to maximize the defender's time of ownership of the resource. Despite the noisy information, our model successfully learns a cost-effective counter-strategy outperforming its opponent's strategies and shows the advantages of the use of deep reinforcement learning in game theoretic scenarios. We also extend FlipIt to a larger action-spaced game with the introduction of a new lower-cost move and generalize the model to $n$-player FlipIt.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.