Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence analysis of adaptive DIIS algorithms with application to electronic ground state calculations (2002.12850v5)

Published 28 Feb 2020 in math.NA and cs.NA

Abstract: This paper deals with a general class of algorithms for the solution of fixed-point problems that we refer to as \emph{Anderson--Pulay acceleration}. This family includes the DIIS technique and its variant sometimes called commutator-DIIS, both introduced by Pulay in the 1980s to accelerate the convergence of self-consistent field procedures in quantum chemistry, as well as the related Anderson acceleration which dates back to the 1960s, and the wealth of techniques they have inspired. Such methods aim at accelerating the convergence of any fixed-point iteration method by combining several iterates in order to generate the next one at each step. This extrapolation process is characterised by its \emph{depth}, i.e. the number of previous iterates stored, which is a crucial parameter for the efficiency of the method. It is generally fixed to an empirical value. In the present work, we consider two parameter-driven mechanisms to let the depth vary along the iterations. In the first one, the depth grows until a certain nondegeneracy condition is no longer satisfied; then the stored iterates (save for the last one) are discarded and the method "restarts". In the second one, we adapt the depth continuously by eliminating at each step some of the oldest, less relevant, iterates. In an abstract and general setting, we prove under natural assumptions the local convergence and acceleration of these two adaptive Anderson--Pulay methods, and we show that one can theoretically achieve a superlinear convergence rate with each of them. We then investigate their behaviour in quantum chemistry calculations. These numerical experiments show that both adaptive variants exhibit a faster convergence than a standard fixed-depth scheme, and require on average less computational effort per iteration. This study is complemented by a review of known facts on the DIIS, in particular its link with the Anderson acceleration and some multisecant-type quasi-Newton methods.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.