Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Indoor Scene Recognition in 3D (2002.12819v2)

Published 28 Feb 2020 in cs.CV, cs.LG, and cs.RO

Abstract: Recognising in what type of environment one is located is an important perception task. For instance, for a robot operating in indoors it is helpful to be aware whether it is in a kitchen, a hallway or a bedroom. Existing approaches attempt to classify the scene based on 2D images or 2.5D range images. Here, we study scene recognition from 3D point cloud (or voxel) data, and show that it greatly outperforms methods based on 2D birds-eye views. Moreover, we advocate multi-task learning as a way of improving scene recognition, building on the fact that the scene type is highly correlated with the objects in the scene, and therefore with its semantic segmentation into different object classes. In a series of ablation studies, we show that successful scene recognition is not just the recognition of individual objects unique to some scene type (such as a bathtub), but depends on several different cues, including coarse 3D geometry, colour, and the (implicit) distribution of object categories. Moreover, we demonstrate that surprisingly sparse 3D data is sufficient to classify indoor scenes with good accuracy.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.