Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decentralized gradient methods: does topology matter? (2002.12688v1)

Published 28 Feb 2020 in cs.LG, cs.DC, math.OC, and stat.ML

Abstract: Consensus-based distributed optimization methods have recently been advocated as alternatives to parameter server and ring all-reduce paradigms for large scale training of machine learning models. In this case, each worker maintains a local estimate of the optimal parameter vector and iteratively updates it by averaging the estimates obtained from its neighbors, and applying a correction on the basis of its local dataset. While theoretical results suggest that worker communication topology should have strong impact on the number of epochs needed to converge, previous experiments have shown the opposite conclusion. This paper sheds lights on this apparent contradiction and show how sparse topologies can lead to faster convergence even in the absence of communication delays.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.