Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Comparison of Speech Representations for Automatic Quality Estimation in Multi-Speaker Text-to-Speech Synthesis (2002.12645v2)

Published 28 Feb 2020 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: We aim to characterize how different speakers contribute to the perceived output quality of multi-speaker Text-to-Speech (TTS) synthesis. We automatically rate the quality of TTS using a neural network (NN) trained on human mean opinion score (MOS) ratings. First, we train and evaluate our NN model on 13 different TTS and voice conversion (VC) systems from the ASVSpoof 2019 Logical Access (LA) Dataset. Since it is not known how best to represent speech for this task, we compare 8 different representations alongside MOSNet frame-based features. Our representations include image-based spectrogram features and x-vector embeddings that explicitly model different types of noise such as T60 reverberation time. Our NN predicts MOS with a high correlation to human judgments. We report prediction correlation and error. A key finding is the quality achieved for certain speakers seems consistent, regardless of the TTS or VC system. It is widely accepted that some speakers give higher quality than others for building a TTS system: our method provides an automatic way to identify such speakers. Finally, to see if our quality prediction models generalize, we predict quality scores for synthetic speech using a separate multi-speaker TTS system that was trained on LibriTTS data, and conduct our own MOS listening test to compare human ratings with our NN predictions.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.