Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Are L2 adversarial examples intrinsically different? (2002.12527v2)

Published 28 Feb 2020 in cs.CV

Abstract: Deep Neural Network (DDN) has achieved notable success in various tasks, including many security concerning scenarios. However, a considerable amount of work has proved its vulnerability to adversaries. We unravel the properties that can intrinsically differentiate adversarial examples and normal inputs through theoretical analysis. That is, adversarial examples generated by $L_2$ attacks usually have larger input sensitivity which can be used to identify them efficiently. We also found that those generated by $L_\infty$ attacks will be different enough in the pixel domain to be detected empirically. To verify our analysis, we proposed a \textbf{G}uided \textbf{C}omplementary \textbf{D}efense module (\textbf{GCD}) integrating detection and recovery processes. When compared with adversarial detection methods, our detector achieves a detection AUC of over 0.98 against most of the attacks. When comparing our guided rectifier with commonly used adversarial training methods and other rectification methods, our rectifier outperforms them by a large margin. We achieve a recovered classification accuracy of up to 99\% on MNIST, 89\% on CIFAR-10, and 87\% on ImageNet subsets against $L_2$ attacks. Furthermore, under the white-box setting, our holistic defensive module shows a promising degree of robustness. Thus, we confirm that at least $L_2$ adversarial examples are intrinsically different enough from normal inputs both theoretically and empirically. And we shed light upon designing simple yet effective defensive methods with these properties.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.