Affinity guided Geometric Semi-Supervised Metric Learning (2002.12394v2)
Abstract: In this paper, we revamp the forgotten classical Semi-Supervised Distance Metric Learning (SSDML) problem from a Riemannian geometric lens, to leverage stochastic optimization within a end-to-end deep framework. The motivation comes from the fact that apart from a few classical SSDML approaches learning a linear Mahalanobis metric, deep SSDML has not been studied. We first extend existing SSDML methods to their deep counterparts and then propose a new method to overcome their limitations. Due to the nature of constraints on our metric parameters, we leverage Riemannian optimization. Our deep SSDML method with a novel affinity propagation based triplet mining strategy outperforms its competitors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.