Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fairness-Aware Learning with Prejudice Free Representations (2002.12143v1)

Published 26 Feb 2020 in cs.LG and stat.ML

Abstract: Machine learning models are extensively being used to make decisions that have a significant impact on human life. These models are trained over historical data that may contain information about sensitive attributes such as race, sex, religion, etc. The presence of such sensitive attributes can impact certain population subgroups unfairly. It is straightforward to remove sensitive features from the data; however, a model could pick up prejudice from latent sensitive attributes that may exist in the training data. This has led to the growing apprehension about the fairness of the employed models. In this paper, we propose a novel algorithm that can effectively identify and treat latent discriminating features. The approach is agnostic of the learning algorithm and generalizes well for classification as well as regression tasks. It can also be used as a key aid in proving that the model is free of discrimination towards regulatory compliance if the need arises. The approach helps to collect discrimination-free features that would improve the model performance while ensuring the fairness of the model. The experimental results from our evaluations on publicly available real-world datasets show a near-ideal fairness measurement in comparison to other methods.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube