Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Additive Tree $O(ρ\log n)$-Spanners from Tree Breadth $ρ$ (2002.12103v1)

Published 27 Feb 2020 in math.CO and cs.DM

Abstract: The tree breadth ${\rm tb}(G)$ of a connected graph $G$ is the smallest non-negative integer $\rho$ such that $G$ has a tree decomposition whose bags all have radius at most $\rho$. We show that, given a connected graph $G$ of order $n$ and size $m$, one can construct in time $O(m\log n)$ an additive tree $O\big({\rm tb}(G)\log n\big)$-spanner of $G$, that is, a spanning subtree $T$ of $G$ in which $d_T(u,v)\leq d_G(u,v)+O\big({\rm tb}(G)\log n\big)$ for every two vertices $u$ and $v$ of $G$. This improves earlier results of Dragan and K\"{o}hler (Algorithmica 69 (2014) 884-905), who obtained a multiplicative error of the same order, and of Dragan and Abu-Ata (Theoretical Computer Science 547 (2014) 1-17), who achieved the same additive error with a collection of $O(\log n)$ trees.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.