Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reducing Geographic Performance Differential for Face Recognition (2002.12093v1)

Published 27 Feb 2020 in cs.CV

Abstract: As face recognition algorithms become more accurate and get deployed more widely, it becomes increasingly important to ensure that the algorithms work equally well for everyone. We study the geographic performance differentials-differences in false acceptance and false rejection rates across different countries-when comparing selfies against photos from ID documents. We show how to mitigate geographic performance differentials using sampling strategies despite large imbalances in the dataset. Using vanilla domain adaptation strategies to fine-tune a face recognition CNN on domain-specific doc-selfie data improves the performance of the model on such data, but, in the presence of imbalanced training data, also significantly increases the demographic bias. We then show how to mitigate this effect by employing sampling strategies to balance the training procedure.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.