Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Training Adversarial Agents to Exploit Weaknesses in Deep Control Policies (2002.12078v1)

Published 27 Feb 2020 in cs.LG, cs.RO, cs.SY, eess.SY, and stat.ML

Abstract: Deep learning has become an increasingly common technique for various control problems, such as robotic arm manipulation, robot navigation, and autonomous vehicles. However, the downside of using deep neural networks to learn control policies is their opaque nature and the difficulties of validating their safety. As the networks used to obtain state-of-the-art results become increasingly deep and complex, the rules they have learned and how they operate become more challenging to understand. This presents an issue, since in safety-critical applications the safety of the control policy must be ensured to a high confidence level. In this paper, we propose an automated black box testing framework based on adversarial reinforcement learning. The technique uses an adversarial agent, whose goal is to degrade the performance of the target model under test. We test the approach on an autonomous vehicle problem, by training an adversarial reinforcement learning agent, which aims to cause a deep neural network-driven autonomous vehicle to collide. Two neural networks trained for autonomous driving are compared, and the results from the testing are used to compare the robustness of their learned control policies. We show that the proposed framework is able to find weaknesses in both control policies that were not evident during online testing and therefore, demonstrate a significant benefit over manual testing methods.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.