Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Contracts (2002.12034v1)

Published 27 Feb 2020 in cs.DS and cs.GT

Abstract: We initiate the study of computing (near-)optimal contracts in succinctly representable principal-agent settings. Here optimality means maximizing the principal's expected payoff over all incentive-compatible contracts---known in economics as "second-best" solutions. We also study a natural relaxation to approximately incentive-compatible contracts. We focus on principal-agent settings with succinctly described (and exponentially large) outcome spaces. We show that the computational complexity of computing a near-optimal contract depends fundamentally on the number of agent actions. For settings with a constant number of actions, we present a fully polynomial-time approximation scheme (FPTAS) for the separation oracle of the dual of the problem of minimizing the principal's payment to the agent, and use this subroutine to efficiently compute a delta-incentive-compatible (delta-IC) contract whose expected payoff matches or surpasses that of the optimal IC contract. With an arbitrary number of actions, we prove that the problem is hard to approximate within any constant c. This inapproximability result holds even for delta-IC contracts where delta is a sufficiently rapidly-decaying function of c. On the positive side, we show that simple linear delta-IC contracts with constant delta are sufficient to achieve a constant-factor approximation of the "first-best" (full-welfare-extracting) solution, and that such a contract can be computed in polynomial time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Paul Duetting (14 papers)
  2. Tim Roughgarden (80 papers)
  3. Inbal Talgam-Cohen (41 papers)
Citations (51)

Summary

We haven't generated a summary for this paper yet.