Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adapted tree boosting for Transfer Learning (2002.11982v2)

Published 27 Feb 2020 in cs.LG and stat.ML

Abstract: Secure online transaction is an essential task for e-commerce platforms. Alipay, one of the world's leading cashless payment platform, provides the payment service to both merchants and individual customers. The fraud detection models are built to protect the customers, but stronger demands are raised by the new scenes, which are lacking in training data and labels. The proposed model makes a difference by utilizing the data under similar old scenes and the data under a new scene is treated as the target domain to be promoted. Inspired by this real case in Alipay, we view the problem as a transfer learning problem and design a set of revise strategies to transfer the source domain models to the target domain under the framework of gradient boosting tree models. This work provides an option for the cold-starting and data-sharing problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.