Papers
Topics
Authors
Recent
2000 character limit reached

Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions? (2002.11962v3)

Published 27 Feb 2020 in math.OC and cs.LG

Abstract: It is well-known that given a bounded, smooth nonconvex function, standard gradient-based methods can find $\epsilon$-stationary points (where the gradient norm is less than $\epsilon$) in $\mathcal{O}(1/\epsilon2)$ iterations. However, many important nonconvex optimization problems, such as those associated with training modern neural networks, are inherently not smooth, making these results inapplicable. Moreover, as recently pointed out in Zhang et al. [2020], it is generally impossible to provide finite-time guarantees for finding an $\epsilon$-stationary point of nonsmooth functions. Perhaps the most natural relaxation of this is to find points which are near such $\epsilon$-stationary points. In this paper, we show that even this relaxed goal is hard to obtain in general, given only black-box access to the function values and gradients. We also discuss the pros and cons of alternative approaches.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.