Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions? (2002.11962v3)

Published 27 Feb 2020 in math.OC and cs.LG

Abstract: It is well-known that given a bounded, smooth nonconvex function, standard gradient-based methods can find $\epsilon$-stationary points (where the gradient norm is less than $\epsilon$) in $\mathcal{O}(1/\epsilon2)$ iterations. However, many important nonconvex optimization problems, such as those associated with training modern neural networks, are inherently not smooth, making these results inapplicable. Moreover, as recently pointed out in Zhang et al. [2020], it is generally impossible to provide finite-time guarantees for finding an $\epsilon$-stationary point of nonsmooth functions. Perhaps the most natural relaxation of this is to find points which are near such $\epsilon$-stationary points. In this paper, we show that even this relaxed goal is hard to obtain in general, given only black-box access to the function values and gradients. We also discuss the pros and cons of alternative approaches.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.