Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Review, Analysis and Design of a Comprehensive Deep Reinforcement Learning Framework (2002.11883v2)

Published 27 Feb 2020 in cs.LG, cs.AI, cs.GT, and cs.RO

Abstract: The integration of deep learning to reinforcement learning (RL) has enabled RL to perform efficiently in high-dimensional environments. Deep RL methods have been applied to solve many complex real-world problems in recent years. However, development of a deep RL-based system is challenging because of various issues such as the selection of a suitable deep RL algorithm, its network configuration, training time, training methods, and so on. This paper proposes a comprehensive software framework that not only plays a vital role in designing a connect-the-dots deep RL architecture but also provides a guideline to develop a realistic RL application in a short time span. We have designed and developed a deep RL-based software framework that strictly ensures flexibility, robustness, and scalability. By inheriting the proposed architecture, software managers can foresee any challenges when designing a deep RL-based system. As a result, they can expedite the design process and actively control every stage of software development, which is especially critical in agile development environments. To enforce generalization, the proposed architecture does not depend on a specific RL algorithm, a network configuration, the number of agents, or the type of agents. Using our framework, software developers can develop and integrate new RL algorithms or new types of agents, and can flexibly change network configuration or the number of agents.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.