Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Streaming Active Deep Forest for Evolving Data Stream Classification (2002.11816v1)

Published 26 Feb 2020 in cs.LG and stat.ML

Abstract: In recent years, Deep Neural Networks (DNNs) have gained progressive momentum in many areas of machine learning. The layer-by-layer process of DNNs has inspired the development of many deep models, including deep ensembles. The most notable deep ensemble-based model is Deep Forest, which can achieve highly competitive performance while having much fewer hyper-parameters comparing to DNNs. In spite of its huge success in the batch learning setting, no effort has been made to adapt Deep Forest to the context of evolving data streams. In this work, we introduce the Streaming Deep Forest (SDF) algorithm, a high-performance deep ensemble method specially adapted to stream classification. We also present the Augmented Variable Uncertainty (AVU) active learning strategy to reduce the labeling cost in the streaming context. We compare the proposed methods to state-of-the-art streaming algorithms in a wide range of datasets. The results show that by following the AVU active learning strategy, SDF with only 70\% of labeling budget significantly outperforms other methods trained with all instances.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.