Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Composing Normalizing Flows for Inverse Problems (2002.11743v3)

Published 26 Feb 2020 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: Given an inverse problem with a normalizing flow prior, we wish to estimate the distribution of the underlying signal conditioned on the observations. We approach this problem as a task of conditional inference on the pre-trained unconditional flow model. We first establish that this is computationally hard for a large class of flow models. Motivated by this, we propose a framework for approximate inference that estimates the target conditional as a composition of two flow models. This formulation leads to a stable variational inference training procedure that avoids adversarial training. Our method is evaluated on a variety of inverse problems and is shown to produce high-quality samples with uncertainty quantification. We further demonstrate that our approach can be amortized for zero-shot inference.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.