Papers
Topics
Authors
Recent
2000 character limit reached

Decidability of Sample Complexity of PAC Learning in finite setting (2002.11519v1)

Published 26 Feb 2020 in cs.LG, cs.LO, and stat.ML

Abstract: In this short note we observe that the sample complexity of PAC machine learning of various concepts, including learning the maximum (EMX), can be exactly determined when the support of the probability measures considered as models satisfies an a-priori bound. This result contrasts with the recently discovered undecidability of EMX within ZFC for finitely supported probabilities (with no a priori bound). Unfortunately, the decision procedure is at present, at least doubly exponential in the number of points times the uniform bound on the support size.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.