Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Consensus-Halving: Does It Ever Get Easier? (2002.11437v4)

Published 26 Feb 2020 in cs.CC and cs.GT

Abstract: In the $\varepsilon$-Consensus-Halving problem, a fundamental problem in fair division, there are $n$ agents with valuations over the interval $[0,1]$, and the goal is to divide the interval into pieces and assign a label "$+$" or "$-$" to each piece, such that every agent values the total amount of "$+$" and the total amount of "$-$" almost equally. The problem was recently proven by Filos-Ratsikas and Goldberg [2019] to be the first "natural" complete problem for the computational class PPA, answering a decade-old open question. In this paper, we examine the extent to which the problem becomes easy to solve, if one restricts the class of valuation functions. To this end, we provide the following contributions. First, we obtain a strengthening of the PPA-hardness result of [Filos-Ratsikas and Goldberg, 2019], to the case when agents have piecewise uniform valuations with only two blocks. We obtain this result via a new reduction, which is in fact conceptually much simpler than the corresponding one in [Filos-Ratsikas and Goldberg, 2019]. Then, we consider the case of single-block (uniform) valuations and provide a parameterized polynomial time algorithm for solving $\varepsilon$-Consensus-Halving for any $\varepsilon$, as well as a polynomial-time algorithm for $\varepsilon=1/2$. Finally, an important application of our new techniques is the first hardness result for a generalization of Consensus-Halving, the Consensus-$1/k$-Division problem [Simmons and Su, 2003]. In particular, we prove that $\varepsilon$-Consensus-$1/3$-Division is PPAD-hard.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.