Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Time integration of tree tensor networks (2002.11392v2)

Published 26 Feb 2020 in math.NA and cs.NA

Abstract: Dynamical low-rank approximation by tree tensor networks is studied for the data-sparse approximation to large time-dependent data tensors and unknown solutions of tensor differential equations. A time integration method for tree tensor networks of prescribed tree rank is presented and analyzed. It extends the known projector-splitting integrators for dynamical low-rank approximation by matrices and Tucker tensors and is shown to inherit their favorable properties. The integrator is based on recursively applying the Tucker tensor integrator. In every time step, the integrator climbs up and down the tree: it uses a recursion that passes from the root to the leaves of the tree for the construction of initial value problems on subtree tensor networks using appropriate restrictions and prolongations, and another recursion that passes from the leaves to the root for the update of the factors in the tree tensor network. The integrator reproduces given time-dependent tree tensor networks of the specified tree rank exactly and is robust to the typical presence of small singular values in matricizations of the connection tensors, in contrast to standard integrators applied to the differential equations for the factors in the dynamical low-rank approximation by tree tensor networks.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.