Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bandwidth-Optimized Parallel Algorithms for Sparse Matrix-Matrix Multiplication using Propagation Blocking (2002.11302v1)

Published 26 Feb 2020 in cs.DC

Abstract: Sparse matrix-matrix multiplication (SpGEMM) is a widely used kernel in various graph, scientific computing and machine learning algorithms. It is well known that SpGEMM is a memory-bound operation, and its peak performance is expected to be bound by the memory bandwidth. Yet, existing algorithms fail to saturate the memory bandwidth, resulting in suboptimal performance under the Roofline model. In this paper we characterize existing SpGEMM algorithms based on their memory access patterns and develop practical lower and upper bounds for SpGEMM performance. We then develop an SpGEMM algorithm based on outer product matrix multiplication. The newly developed algorithm called PB-SpGEMM saturates memory bandwidth by using the propagation blocking technique and by performing in-cache sorting and merging. For many practical matrices, PB-SpGEMM runs 20%-50% faster than the state-of-the-art heap and hash SpGEMM algorithms on modern multicore processors. Most importantly, PB-SpGEMM attains performance predicted by the Roofline model, and its performance remains stable with respect to matrix size and sparsity.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.