Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 29 tok/s
Gemini 2.5 Flash 127 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 184 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Spectral Sparsification via Bounded-Independence Sampling (2002.11237v2)

Published 26 Feb 2020 in cs.DS and cs.CC

Abstract: We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph $G$ on $n$ vertices described by a binary string of length $N$, an integer $k\leq \log n$, and an error parameter $\epsilon > 0$, our algorithm runs in space $\tilde{O}(k\log (N\cdot w_{\mathrm{max}}/w_{\mathrm{min}}))$ where $w_{\mathrm{max}}$ and $w_{\mathrm{min}}$ are the maximum and minimum edge weights in $G$, and produces a weighted graph $H$ with $\tilde{O}(n{1+2/k}/\epsilon2)$ edges that spectrally approximates $G$, in the sense of Spielmen and Teng [ST04], up to an error of $\epsilon$. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava's effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by $k$ above, and the resulting sparsity that can be achieved.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.