Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Two-Level Parameterized Model-Order Reduction Approach for Time-Domain Elastodynamics (2002.11084v2)

Published 25 Feb 2020 in math.NA and cs.NA

Abstract: We present a two-level parameterized Model Order Reduction (pMOR) technique for the linear hyperbolic Partial Differential Equation (PDE) of time-domain elastodynamics. In order to approximate the frequency-domain PDE, we take advantage of the Port-Reduced Reduced-Basis Component (PR-RBC) method to develop (in the offline stage) reduced bases for subdomains; the latter are then assembled (in the online stage) to form the global domains of interest. The PR-RBC approach reduces the effective dimensionality of the parameter space and also provides flexibility in topology and geometry. In the online stage, for each query, we consider a given parameter value and associated global domain. In the first level of reduction, the PR-RBC reduced bases are used to approximate the frequency-domain solution at selected frequencies. In the second level of reduction, these instantiated PR-RBC approximations are used as surrogate truth solutions in a Strong Greedy approach to identify a reduced basis space; the PDE of time-domain elastodynamics is then projected on this reduced space. We provide a numerical example to demonstrate the computational capability and assess the performance of the proposed two-level approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.