Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimal Gradient Quantization Condition for Communication-Efficient Distributed Training (2002.11082v1)

Published 25 Feb 2020 in cs.LG, cs.DC, and stat.ML

Abstract: The communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications. In particular, the growing size of deep learning models leads to higher communication overheads that defy the ideal linear training speedup regarding the number of devices. Gradient quantization is one of the common methods to reduce communication costs. However, it can lead to quantization error in the training and result in model performance degradation. In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for \textbf{ANY} gradient distribution. Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively, which dynamically determine the optimal quantization levels. Extensive experimental results on CIFAR and ImageNet datasets with several popular convolutional neural networks show the superiority of our proposed methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.