Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Threshold Dimension and Irreducible Graphs (2002.11048v1)

Published 25 Feb 2020 in math.CO and cs.DM

Abstract: Let $G$ be a graph, and let $u$, $v$, and $w$ be vertices of $G$. If the distance between $u$ and $w$ does not equal the distance between $v$ and $w$, then $w$ is said to resolve $u$ and $v$. The metric dimension of $G$, denoted $\beta(G)$, is the cardinality of a smallest set $W$ of vertices such that every pair of vertices of $G$ is resolved by some vertex of $W$. The threshold dimension of $G$, denoted $\tau(G)$, is the minimum metric dimension among all graphs $H$ having $G$ as a spanning subgraph. In other words, the threshold dimension of $G$ is the minimum metric dimension among all graphs obtained from $G$ by adding edges. If $\beta(G) = \tau(G)$, then $G$ is said to be irreducible. We give two upper bounds for the threshold dimension of a graph, the first in terms of the diameter, and the second in terms of the chromatic number. As a consequence, we show that every planar graph of order $n$ has threshold dimension $O (\log_2 n)$. We show that several infinite families of graphs, known to have metric dimension $3$, are in fact irreducible. Finally, we show that for any integers $n$ and $b$ with $1 \leq b < n$, there is an irreducible graph of order $n$ and metric dimension $b$.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube