Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

KEML: A Knowledge-Enriched Meta-Learning Framework for Lexical Relation Classification (2002.10903v2)

Published 25 Feb 2020 in cs.CL

Abstract: Lexical relations describe how concepts are semantically related, in the form of relation triples. The accurate prediction of lexical relations between concepts is challenging, due to the sparsity of patterns indicating the existence of such relations. We propose the Knowledge-Enriched Meta-Learning (KEML) framework to address the task of lexical relation classification. In KEML, the LKB-BERT (Lexical Knowledge Base-BERT) model is presented to learn concept representations from massive text corpora, with rich lexical knowledge injected by distant supervision. A probabilistic distribution of auxiliary tasks is defined to increase the model's ability to recognize different types of lexical relations. We further combine a meta-learning process over the auxiliary task distribution and supervised learning to train the neural lexical relation classifier. Experiments over multiple datasets show that KEML outperforms state-of-the-art methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.