Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning Machines from Simulation to Real World (2002.10853v1)

Published 25 Feb 2020 in cs.RO

Abstract: Learning Machines is developing a flexible, cross-industry, advanced analytics platform, targeted during stealth-stage at a limited number of specific vertical applications. In this paper, we aim to integrate a general machine system to learn a variant of tasks from simulation to real world. In such a machine system, it involves real-time robot vision, sensor fusion, and learning algorithms (reinforcement learning). To this end, we demonstrate the general machine system on three fundamental tasks including obstacle avoidance, foraging, and predator-prey robot. The proposed solutions are implemented on Robobo robots with mobile device (smartphone with camera) as interface and built-in infrared (IR) sensors. The agent is trained in a virtual environment. In order to assess its performance, the learned agent is tested in the virtual environment and reproduce the same results in a real environment. The results show that the reinforcement learning algorithm can be reliably used for a variety of tasks in unknown environments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.