Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Controllable Sequence-To-Sequence Neural TTS with LPCNET Backend for Real-time Speech Synthesis on CPU (2002.10708v1)

Published 25 Feb 2020 in eess.AS

Abstract: State-of-the-art sequence-to-sequence acoustic networks, that convert a phonetic sequence to a sequence of spectral features with no explicit prosody prediction, generate speech with close to natural quality, when cascaded with neural vocoders, such as Wavenet. However, the combined system is typically too heavy for real-time speech synthesis on a CPU. In this work we present a sequence-to-sequence acoustic network combined with lightweight LPCNet neural vocoder, designed for real-time speech synthesis on a CPU. In addition, the system allows sentence-level pace and expressivity control at inference time. We demonstrate that the proposed system can synthesize high quality 22 kHz speech in real-time on a general-purpose CPU. In terms of MOS score degradation relative to PCM, the system attained as low as 6.1-6.5% for quality and 6.3- 7.0% for expressiveness, reaching equivalent or better quality when compared to a similar system with a Wavenet vocoder backend.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.