The Power of Many Samples in Query Complexity (2002.10654v1)
Abstract: The randomized query complexity $R(f)$ of a boolean function $f\colon{0,1}n\to{0,1}$ is famously characterized (via Yao's minimax) by the least number of queries needed to distinguish a distribution $D_0$ over $0$-inputs from a distribution $D_1$ over $1$-inputs, maximized over all pairs $(D_0,D_1)$. We ask: Does this task become easier if we allow query access to infinitely many samples from either $D_0$ or $D_1$? We show the answer is no: There exists a hard pair $(D_0,D_1)$ such that distinguishing $D_0\infty$ from $D_1\infty$ requires $\Theta(R(f))$ many queries. As an application, we show that for any composed function $f\circ g$ we have $R(f\circ g) \geq \Omega(\mathrm{fbs}(f)R(g))$ where $\mathrm{fbs}$ denotes fractional block sensitivity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.