Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Loop Closure Detection via Binary Content (2002.10622v2)

Published 25 Feb 2020 in cs.CV and cs.RO

Abstract: Loop closure detection plays an important role in reducing localization drift in Simultaneous Localization And Mapping (SLAM). It aims to find repetitive scenes from historical data to reset localization. To tackle the loop closure problem, existing methods often leverage on the matching of visual features, which achieve good accuracy but require high computational resources. However, feature point based methods ignore the patterns of image, i.e., the shape of the objects as well as the distribution of objects in an image. It is believed that this information is usually unique for a scene and can be utilized to improve the performance of traditional loop closure detection methods. In this paper we leverage and compress the information into a binary image to accelerate an existing fast loop closure detection method via binary content. The proposed method can greatly reduce the computational cost without sacrificing recall rate. It consists of three parts: binary content construction, fast image retrieval and precise loop closure detection. No offline training is required. Our method is compared with the state-of-the-art loop closure detection methods and the results show that it outperforms the traditional methods at both recall rate and speed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Han Wang (420 papers)
  2. Juncheng Li (121 papers)
  3. Maopeng Ran (9 papers)
  4. Lihua Xie (212 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.