Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Fast Loop Closure Detection via Binary Content (2002.10622v2)

Published 25 Feb 2020 in cs.CV and cs.RO

Abstract: Loop closure detection plays an important role in reducing localization drift in Simultaneous Localization And Mapping (SLAM). It aims to find repetitive scenes from historical data to reset localization. To tackle the loop closure problem, existing methods often leverage on the matching of visual features, which achieve good accuracy but require high computational resources. However, feature point based methods ignore the patterns of image, i.e., the shape of the objects as well as the distribution of objects in an image. It is believed that this information is usually unique for a scene and can be utilized to improve the performance of traditional loop closure detection methods. In this paper we leverage and compress the information into a binary image to accelerate an existing fast loop closure detection method via binary content. The proposed method can greatly reduce the computational cost without sacrificing recall rate. It consists of three parts: binary content construction, fast image retrieval and precise loop closure detection. No offline training is required. Our method is compared with the state-of-the-art loop closure detection methods and the results show that it outperforms the traditional methods at both recall rate and speed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.