Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

MIDMod-OSN: A Microscopic-level Information Diffusion Model for Online Social Networks (2002.10522v2)

Published 24 Feb 2020 in cs.SI and physics.soc-ph

Abstract: As online social networks continue to be commonly used for the dissemination of information to the public, understanding the phenomena that govern information diffusion is crucial for many security and safety-related applications, such as maximizing information spread and misinformation containment during crises and natural disasters. In this study, we hypothesize that the features that contribute to information diffusion in online social networks are significantly influenced by the type of event being studied. We classify Twitter events as either informative or trending and then explore the node-to-node influence dynamics associated with information spread. We build a model based on Bayesian Logistic Regression for learning and prediction and Random Forests for feature selection. Experimental results from real-world data sets show that the proposed model outperforms state-of-the-art diffusion prediction models, achieving 93% accuracy in informative events and 86% in trending events. We observed that the models for informative and trending events differ significantly, both in the diffusion process and in the user features that govern the diffusion. Our findings show that followers play an important role in the diffusion process and it is possible to use the diffusion and OSN behavior of users for predicting the trending character of a message without having to count the number of reactions.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.