Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics Constrained Learning for Data-driven Inverse Modeling from Sparse Observations (2002.10521v1)

Published 24 Feb 2020 in math.NA and cs.NA

Abstract: Deep neural networks (DNN) have been used to model nonlinear relations between physical quantities. Those DNNs are embedded in physical systems described by partial differential equations (PDE) and trained by minimizing a loss function that measures the discrepancy between predictions and observations in some chosen norm. This loss function often includes the PDE constraints as a penalty term when only sparse observations are available. As a result, the PDE is only satisfied approximately by the solution. However, the penalty term typically slows down the convergence of the optimizer for stiff problems. We present a new approach that trains the embedded DNNs while numerically satisfying the PDE constraints. We develop an algorithm that enables differentiating both explicit and implicit numerical solvers in reverse-mode automatic differentiation. This allows the gradients of the DNNs and the PDE solvers to be computed in a unified framework. We demonstrate that our approach enjoys faster convergence and better stability in relatively stiff problems compared to the penalty method. Our approach allows for the potential to solve and accelerate a wide range of data-driven inverse modeling, where the physical constraints are described by PDEs and need to be satisfied accurately.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kailai Xu (20 papers)
  2. Eric Darve (72 papers)
Citations (64)

Summary

We haven't generated a summary for this paper yet.