Q-learning with Uniformly Bounded Variance: Large Discounting is Not a Barrier to Fast Learning (2002.10301v2)
Abstract: Sample complexity bounds are a common performance metric in the Reinforcement Learning literature. In the discounted cost, infinite horizon setting, all of the known bounds have a factor that is a polynomial in $1/(1-\gamma)$, where $\gamma < 1$ is the discount factor. For a large discount factor, these bounds seem to imply that a very large number of samples is required to achieve an $\varepsilon$-optimal policy. The objective of the present work is to introduce a new class of algorithms that have sample complexity uniformly bounded for all $\gamma < 1$. One may argue that this is impossible, due to a recent min-max lower bound. The explanation is that this previous lower bound is for a specific problem, which we modify, without compromising the ultimate objective of obtaining an $\varepsilon$-optimal policy. Specifically, we show that the asymptotic covariance of the Q-learning algorithm with an optimized step-size sequence is a quadratic function of $1/(1-\gamma)$; an expected, and essentially known result. The new relative Q-learning algorithm proposed here is shown to have asymptotic covariance that is a quadratic in $1/(1- \rho* \gamma)$, where $1 - \rho* > 0$ is an upper bound on the spectral gap of an optimal transition matrix.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.