Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Q-learning with Uniformly Bounded Variance: Large Discounting is Not a Barrier to Fast Learning (2002.10301v2)

Published 24 Feb 2020 in cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: Sample complexity bounds are a common performance metric in the Reinforcement Learning literature. In the discounted cost, infinite horizon setting, all of the known bounds have a factor that is a polynomial in $1/(1-\gamma)$, where $\gamma < 1$ is the discount factor. For a large discount factor, these bounds seem to imply that a very large number of samples is required to achieve an $\varepsilon$-optimal policy. The objective of the present work is to introduce a new class of algorithms that have sample complexity uniformly bounded for all $\gamma < 1$. One may argue that this is impossible, due to a recent min-max lower bound. The explanation is that this previous lower bound is for a specific problem, which we modify, without compromising the ultimate objective of obtaining an $\varepsilon$-optimal policy. Specifically, we show that the asymptotic covariance of the Q-learning algorithm with an optimized step-size sequence is a quadratic function of $1/(1-\gamma)$; an expected, and essentially known result. The new relative Q-learning algorithm proposed here is shown to have asymptotic covariance that is a quadratic in $1/(1- \rho* \gamma)$, where $1 - \rho* > 0$ is an upper bound on the spectral gap of an optimal transition matrix.

Citations (19)

Summary

We haven't generated a summary for this paper yet.