Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Identifying stochastic governing equations from data of the most probable transition trajectories (2002.10251v2)

Published 18 Feb 2020 in math.NA, cs.NA, physics.comp-ph, and stat.ME

Abstract: Extracting governing stochastic differential equation models from elusive data is crucial to understand and forecast dynamics for complex systems. We devise a method to extract the drift term and estimate the diffusion coefficient of a governing stochastic dynamical system, from its time-series data of the most probable transition trajectory. By the Onsager-Machlup theory, the most probable transition trajectory satisfies the corresponding Euler-Lagrange equation, which is a second order deterministic ordinary differential equation involving the drift term and diffusion coefficient. We first estimate the coefficients of the Euler-Lagrange equation based on the data of the most probable trajectory, and then we calculate the drift and diffusion coefficients of the governing stochastic dynamical system. These two steps involve sparse regression and optimization. Finally, we illustrate our method with an example and some discussions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube