Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Communication Contention Aware Scheduling of Multiple Deep Learning Training Jobs (2002.10105v1)

Published 24 Feb 2020 in cs.DC, cs.CV, and cs.LG

Abstract: Distributed Deep Learning (DDL) has rapidly grown its popularity since it helps boost the training performance on high-performance GPU clusters. Efficient job scheduling is indispensable to maximize the overall performance of the cluster when training multiple jobs simultaneously. However, existing schedulers do not consider the communication contention of multiple communication tasks from different distributed training jobs, which could deteriorate the system performance and prolong the job completion time. In this paper, we first establish a new DDL job scheduling framework which organizes DDL jobs as Directed Acyclic Graphs (DAGs) and considers communication contention between nodes. We then propose an efficient algorithm, LWF-$\kappa$, to balance the GPU utilization and consolidate the allocated GPUs for each job. When scheduling those communication tasks, we observe that neither avoiding all the contention nor blindly accepting them is optimal to minimize the job completion time. We thus propose a provable algorithm, AdaDUAL, to efficiently schedule those communication tasks. Based on AdaDUAL, we finally propose Ada-SRSF for the DDL job scheduling problem. Simulations on a 64-GPU cluster connected with 10 Gbps Ethernet show that LWF-$\kappa$ achieves up to $1.59\times$ improvement over the classical first-fit algorithms. More importantly, Ada-SRSF reduces the average job completion time by $20.1\%$ and $36.7\%$, as compared to the SRSF(1) scheme (avoiding all the contention) and the SRSF(2) scheme (blindly accepting all of two-way communication contention) respectively.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.