Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Rapid and Robust Adversarial Training with One-Step Attacks (2002.10097v4)

Published 24 Feb 2020 in cs.LG and stat.ML

Abstract: Adversarial training is the most successful empirical method for increasing the robustness of neural networks against adversarial attacks. However, the most effective approaches, like training with Projected Gradient Descent (PGD) are accompanied by high computational complexity. In this paper, we present two ideas that, in combination, enable adversarial training with the computationally less expensive Fast Gradient Sign Method (FGSM). First, we add uniform noise to the initial data point of the FGSM attack, which creates a wider variety of adversaries, thus prohibiting overfitting to one particular perturbation bound. Further, we add a learnable regularization step prior to the neural network, which we call Pixelwise Noise Injection Layer (PNIL). Inputs propagated trough the PNIL are resampled from a learned Gaussian distribution. The regularization induced by the PNIL prevents the model form learning to obfuscate its gradients, a factor that hindered prior approaches from successfully applying one-step methods for adversarial training. We show that noise injection in conjunction with FGSM-based adversarial training achieves comparable results to adversarial training with PGD while being considerably faster. Moreover, we outperform PGD-based adversarial training by combining noise injection and PNIL.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.