Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallel Clique Counting and Peeling Algorithms (2002.10047v4)

Published 24 Feb 2020 in cs.DS and cs.DC

Abstract: We present a new parallel algorithm for $k$-clique counting/listing that has polylogarithmic span (parallel time) and is work-efficient (matches the work of the best sequential algorithm) for sparse graphs. Our algorithm is based on computing low out-degree orientations, which we present new linear-work and polylogarithmic-span algorithms for computing in parallel. We also present new parallel algorithms for producing unbiased estimations of clique counts using graph sparsification. Finally, we design two new parallel work-efficient algorithms for approximating the $k$-clique densest subgraph, the first of which is a $1/k$-approximation and the second of which is a $1/(k(1+\epsilon))$-approximation and has polylogarithmic span. Our first algorithm does not have polylogarithmic span, but we prove that it solves a P-complete problem. In addition to the theoretical results, we also implement the algorithms and propose various optimizations to improve their practical performance. On a 30-core machine with two-way hyper-threading, our algorithms achieve 13.23--38.99x and 1.19--13.76x self-relative parallel speedup for $k$-clique counting and $k$-clique densest subgraph, respectively. Compared to the state-of-the-art parallel $k$-clique counting algorithms, we achieve up to 9.88x speedup, and compared to existing implementations of $k$-clique densest subgraph, we achieve up to 11.83x speedup. We are able to compute the $4$-clique counts on the largest publicly-available graph with over two hundred billion edges for the first time.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.