Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Mixed Integer Programming for Searching Maximum Quasi-Bicliques (2002.09880v1)

Published 23 Feb 2020 in cs.DS, cs.AI, cs.DM, cs.SI, and math.OC

Abstract: This paper is related to the problem of finding the maximal quasi-bicliques in a bipartite graph (bigraph). A quasi-biclique in the bigraph is its "almost" complete subgraph. The relaxation of completeness can be understood variously; here, we assume that the subgraph is a $\gamma$-quasi-biclique if it lacks a certain number of edges to form a biclique such that its density is at least $\gamma \in (0,1]$. For a bigraph and fixed $\gamma$, the problem of searching for the maximal quasi-biclique consists of finding a subset of vertices of the bigraph such that the induced subgraph is a quasi-biclique and its size is maximal for a given graph. Several models based on Mixed Integer Programming (MIP) to search for a quasi-biclique are proposed and tested for working efficiency. An alternative model inspired by biclustering is formulated and tested; this model simultaneously maximizes both the size of the quasi-biclique and its density, using the least-square criterion similar to the one exploited by triclustering \textsc{TriBox}.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.