Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning (2002.09843v5)

Published 23 Feb 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend such privacy attacks, many noises perturbation methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, in this paper, we propose \emph{an efficient model perturbation method for federated learning} to defend reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate the added noises, our method allows the server to recover the true gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.