Papers
Topics
Authors
Recent
2000 character limit reached

Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games (2002.09806v5)

Published 23 Feb 2020 in math.OC, cs.GT, and stat.ML

Abstract: In this paper, we consider multi-agent learning via online gradient descent in a class of games called $\lambda$-cocoercive games, a fairly broad class of games that admits many Nash equilibria and that properly includes unconstrained strongly monotone games. We characterize the finite-time last-iterate convergence rate for joint OGD learning on $\lambda$-cocoercive games; further, building on this result, we develop a fully adaptive OGD learning algorithm that does not require any knowledge of problem parameter (e.g. cocoercive constant $\lambda$) and show, via a novel double-stopping time technique, that this adaptive algorithm achieves same finite-time last-iterate convergence rate as non-adaptive counterpart. Subsequently, we extend OGD learning to the noisy gradient feedback case and establish last-iterate convergence results -- first qualitative almost sure convergence, then quantitative finite-time convergence rates -- all under non-decreasing step-sizes. To our knowledge, we provide the first set of results that fill in several gaps of the existing multi-agent online learning literature, where three aspects -- finite-time convergence rates, non-decreasing step-sizes, and fully adaptive algorithms have been unexplored before.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.