Periodic Q-Learning (2002.09795v1)
Abstract: The use of target networks is a common practice in deep reinforcement learning for stabilizing the training; however, theoretical understanding of this technique is still limited. In this paper, we study the so-called periodic Q-learning algorithm (PQ-learning for short), which resembles the technique used in deep Q-learning for solving infinite-horizon discounted Markov decision processes (DMDP) in the tabular setting. PQ-learning maintains two separate Q-value estimates - the online estimate and target estimate. The online estimate follows the standard Q-learning update, while the target estimate is updated periodically. In contrast to the standard Q-learning, PQ-learning enjoys a simple finite time analysis and achieves better sample complexity for finding an epsilon-optimal policy. Our result provides a preliminary justification of the effectiveness of utilizing target estimates or networks in Q-learning algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.