Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Actively Mapping Industrial Structures with Information Gain-Based Planning on a Quadruped Robot (2002.09710v1)

Published 22 Feb 2020 in cs.RO

Abstract: In this paper, we develop an online active mapping system to enable a quadruped robot to autonomously survey large physical structures. We describe the perception, planning and control modules needed to scan and reconstruct an object of interest, without requiring a prior model. The system builds a voxel representation of the object, and iteratively determines the Next-Best-View (NBV) to extend the representation, according to both the reconstruction itself and to avoid collisions with the environment. By computing the expected information gain of a set of candidate scan locations sampled on the as-sensed terrain map, as well as the cost of reaching these candidates, the robot decides the NBV for further exploration. The robot plans an optimal path towards the NBV, avoiding obstacles and un-traversable terrain. Experimental results on both simulated and real-world environments show the capability and efficiency of our system. Finally we present a full system demonstration on the real robot, the ANYbotics ANYmal, autonomously reconstructing a building facade and an industrial structure.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.