Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion (2002.09708v1)

Published 22 Feb 2020 in cs.CV

Abstract: Accurate medical image segmentation commonly requires effective learning of the complementary information from multimodal data. However, in clinical practice, we often encounter the problem of missing imaging modalities. We tackle this challenge and propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities. Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code, which uniquely sticks to each modality, and the modality-invariant content code, which absorbs multimodal information for the segmentation task. With enhanced modality-invariance, the disentangled content code from each modality is fused into a shared representation which gains robustness to missing data. The fusion is achieved via a learning-based strategy to gate the contribution of different modalities at different locations. We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset. With competitive performance to the state-of-the-art approaches for full modality, our method achieves outstanding robustness under various missing modality(ies) situations, significantly exceeding the state-of-the-art method by over 16% in average for Dice on whole tumor segmentation.

Citations (133)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.