Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Branch Learning for Weakly-Labeled Sound Event Detection (2002.09661v1)

Published 22 Feb 2020 in eess.AS

Abstract: There are two sub-tasks implied in the weakly-supervised SED: audio tagging and event boundary detection. Current methods which combine multi-task learning with SED requires annotations both for these two sub-tasks. Since there are only annotations for audio tagging available in weakly-supervised SED, we design multiple branches with different learning purposes instead of pursuing multiple tasks. Similar to multiple tasks, multiple different learning purposes can also prevent the common feature which the multiple branches share from overfitting to any one of the learning purposes. We design these multiple different learning purposes based on combinations of different MIL strategies and different pooling methods. Experiments on the DCASE 2018 Task 4 dataset and the URBAN-SED dataset both show that our method achieves competitive performance.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.