Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation (2002.09516v1)

Published 21 Feb 2020 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: This paper studies the statistical theory of batch data reinforcement learning with function approximation. Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history generated by unknown behavioral policies. We study a regression-based fitted Q iteration method, and show that it is equivalent to a model-based method that estimates a conditional mean embedding of the transition operator. We prove that this method is information-theoretically optimal and has nearly minimal estimation error. In particular, by leveraging contraction property of Markov processes and martingale concentration, we establish a finite-sample instance-dependent error upper bound and a nearly-matching minimax lower bound. The policy evaluation error depends sharply on a restricted $\chi2$-divergence over the function class between the long-term distribution of the target policy and the distribution of past data. This restricted $\chi2$-divergence is both instance-dependent and function-class-dependent. It characterizes the statistical limit of off-policy evaluation. Further, we provide an easily computable confidence bound for the policy evaluator, which may be useful for optimistic planning and safe policy improvement.

Citations (139)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)