Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sequential Submodular Maximization and Applications to Ranking an Assortment of Products (2002.09458v2)

Published 21 Feb 2020 in cs.GT, cs.DM, cs.DS, and math.OC

Abstract: We study a submodular maximization problem motivated by applications in online retail. A platform displays a list of products to a user in response to a search query. The user inspects the first $k$ items in the list for a $k$ chosen at random from a given distribution, and decides whether to purchase an item from that set based on a choice model. The goal of the platform is to maximize the engagement of the shopper defined as the probability of purchase. This problem gives rise to a less-studied variation of submodular maximization in which we are asked to choose an $\textit{ordering}$ of a set of elements to maximize a linear combination of different submodular functions. First, using a reduction to maximizing submodular functions over matroids, we give an optimal $\left(1-1/e\right)$-approximation for this problem. We then consider a variant in which the platform cares not only about user engagement, but also about diversification across various groups of users, that is, guaranteeing a certain probability of purchase in each group. We characterize the polytope of feasible solutions and give a bi-criteria $((1-1/e)2,(1-1/e)2)$-approximation for this problem by rounding an approximate solution of a linear programming relaxation. For rounding, we rely on our reduction and the particular rounding techniques for matroid polytopes. For the special case in which underlying submodular functions are coverage functions -- which is practically relevant in online retail -- we propose an alternative LP relaxation and a simpler randomized rounding for the problem. This approach yields to an optimal bi-criteria $(1-1/e,1-1/e)$-approximation algorithm for the special case of the problem with coverage functions.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube